National Education Policy-2020

Common Minimum Syllabus for Uttarakhand State Universities and Colleges

FYUP Programme- 7th& 8th Semester

FYUP CHEMISTRY SYLLABUS

w. e. f. - 2025-2026

DEPARTMENT OF CHEMISTRY
KUMAUN UNIVERSITY, NAINITAL

DEPARTMENT OF CHEMISTRY
KUMAUN UNIVERSITY NAINITAL

Paculty of Science Comaun University Namital

SYLLABUS PREPARATION COMMITTEE

S.N.	NAME	DESIGNATION	DEPARTMENT	AFFILIAT	ION
1.	Dr. Chitra Pande	Professor	Chemistry	Kumaun Nainital	University
2.	Dr. Nand Gopal Sahoo	Professor	Chemistry	Kumaun Nainital	University
3.	Dr. Geeta Tewari	Professor	Chemistry	Kumaun Nainital	University
4.	Dr. Shah Raj Ali	Professor	Chemistry	Kumaun Nainital	University
5.	Dr. Suhail Javed	Associate Professor	Chemistry	Kumaun Nainital	University
6.	Dr. Mahesh C. Arya	Assistant Professor	Chemistry	Kumaun Nainital	University
7.	Dr. Manoj Dhuni	Assistant Professor	Chemistry	Kumaun Nainital	University
8.	Dr. Penny Joshi	Assistant Professor	Chemistry	Kumaun Nainital	University
9.	Dr. Lalit Mohan	Assistant Professor (Contractual)	Chemistry	Kumaun Nainital	University
10.	Dr. Girish C. Kharkwal	Assistant Professor (Guest)	Chemistry	Kumaun Nainital	University
11.	Dr. Deepshikha Joshi	Assistant Professor (Guest)	Chemistry	Kumaun Nainital	University
12.	Miss. Anchal Aneja	Assistant Professor (Guest)	Chemistry	Kumaun Nainital	University
13.	Dr. Akanksha Rani	Assistant Professor (Guest)	Chemistry	Kumaun Nainital	University
14.	Dr. Bhawana Pant	Assistant Professor (Guest)	Chemistry	Kumaun Nainital	University

SYLLABUS REVIEW COMMITTEE

S.N.	NAME	DESIGNATION	DEPARTMENT	AFFILIATION
1.	Dr. K. R. Prabhu	Professor	Chemistry	Indian Institute of Science,
				Bengaluru
2.	Dr. Robina Aman	Professor	Chemistry	S. S. J. University Almora
3.	Dr. Neeta Joshi	Professor	Chemistry	Sri Dev Suman Uttarakhand
				University, Garhwal
4.	Dr. Beena Negi	Assistant Professor	Chemistry	Gargi College, University of
				Delhi, Delhi

National Education Policy-2020 Common Minimum Syllabus for all Uttarakhand State Universities/ Colleges SUBJECT: CHEMISTRY

	Multidisciplinary Courses of Study [Three Core Disciplines]								
Sem	Core	Elective	Generic	Skill	Internshi	Value	Total		
ester	(DSC)	(DSE)	Elective	Ability Enhancement	Enhance	p/	Addition	Credits	
			(GE)	Course	ment	Apprenti	Course		
				(AEC)	Course	ceship/	(VAC)		
					(SEC)	Project			
VII	DSC-(4)	(3x4) Cours O Choose two and one GE O	R DSE (2x4)				Dissertation on Major (4+2) OR Dissertation on Minor (4+2)	Credits	
		and two	GE (2x4)				OR		
		Course (Total = 12)					Academic Project/ Entrepreneur ship		
VIII	DSC-(4)	(3x4) Cours O Choose two and one GE O	DSE (2x4) (4) Course (R) e DSE (4) GE (2x4)				Dissertation on Major (4+2) OR Dissertation on Minor (4+2) OR Academic Project/ Entrepreneur ship	22 Credits	
Students on exit shall be awarded Bachelor of (in the field of Multidisciplinary Study) (Honours or Honours with Academic Projects/Entrepreneurship) after securing the requisite 176 credits on completion of Semester VIII OR If a student opts for a two-year PG Program, the have the option to obtain a PG diploma in the							Total= 176		
	-	•	_	conclusion of th		-			

Contents			
List of Papers (DSC, DS	E, GE, SEC) with Ser	mester Wise Titles for 'Cher	mistry'

Programme Specific Outcomes (PSOs) (Honours Degree).....

Semester-VII

DSC 7-Course Title: Advanced Chemistry I
DSE 7A-Course Title: Advanced Inorganic Chemistry
DSE 7B-Course Title: Advanced Organic Chemistry
DSE 7C-Course Title: Advanced Physical Chemistry
GE 7A-Course Title: Biology for Chemists
GE 7B-Course Title: Mathematics for Chemists
IAPT 7-Internship/ Apprenticeship/Academic Project/Applied Project/Field Work/Training

Semester-VIII.....

DSC 8-Course Title: Advanced Chemistry II
DSE 8A-Course Title: Pericyclic Reactions and Photochemistry
DSE 8B-Course Title: Spectroscopic Techniques
DSE 8C-Course Title: Chemistry of Biological Systems
GE 8A-Course Title: Solid State Chemistry and Supramolecular Chemistry
GE 8B-Course Title: Analytical and Separation Techniques

IAPT 8-Internship/ Apprenticeship/Academic/Applied Project/Field Work/Training/Dissertation

Year	Semester	Course	Paper Title TI	neory/Practical	Credits
achelor o	f Chemistry	with Hone	ours		l
FOURT	'H VII	DSC 7	Advanced Chemistry I	Theory	3
YEAR			Advanced Experiment Chemistry- I	Practical	1
		DSE 7A	Advanced Inorganic Chemistry	Theory	4
		DSE 7B	Advanced Organic Chemistry	Theory	4
		DSE 7C	Advanced Physical Chemistry	Theory	4
		GE 7A	Biology for Chemists	Theory	4
		GE 7B	Mathematics for Chemists	Theory	4
		IAPT 7	Internship/ Apprenticeship/ Project/Applied Project/Field Work		
	VIII	DSC 8	Advanced Chemistry II	Theory	3
			Advanced Experiment Chemistry-II	Practical	1
		DSE 8A	Pericyclic Reactions and Photochen	nistry Theory	4
		DSE 8B	Spectroscopic Techniques	Theory	4
		DSE 8C	Chemistry of Biological Systems	Theory	4
		GE 8A	SolidState Chemistry and Supra Chemistry	molecular Theory	4
		GE 8B	Analytical and Separation Technique		4
		IAPT 8	Internship/ Apprenticeship/Applied Project/Field Work/Trainin Dissertation for B. Sc. with Research	Practical	

Abbreviations- DSC-Discipline Specific Course; DSE- Discipline Specific Electives; GE-Generic Electives

Pattern of examination A. Theory

Each theory paper shall be of 03 hours and will consist of two sections, A and B. Section A: (Short answers type with reasoning); 40% of the total marks (30 marks, eight questions of six marks each, any five have to be attempted). Section B: (Long answers type); 60 % of the total marks, (45 marks, three questions out of five have to be attempted. Each question carries 15 marks).

B. Internal assessment

For each theory paper, an internal assignment (in the form of class test and or assignments including classroom attendance) of 25 marks for each paper shall be conducted during each semester. The evaluated answer sheets/assignments have to be submitted to the Head of the Department/ Principal along with one copy of award list. The marks obtained have to be uploaded onto the University examination portal and the print out of the award list from portal have to be submitted to the Controller Examination.

C. Practical

The practical work of the students has to be evaluated periodically. The internal assessments (in the form of lab test, lab record, internal evaluation, assignment/home assignment and attendance) of total 25 marks for each semester shall be conducted during the semester. In each semester, practical examination of 75 marks has to conducted by two examiners (External and internal) having duration of two days (time 6 hours each day). The external examiner will examine the students only on the second day of examination. The total number of students to be examined per batch should not be more than sixty. One copy of award list of the practical examination along with attendance has to be submitted to the Head of the Department/ Principal. The marks obtained have to be uploaded onto the University examination portal and the print out of the award list from portal have to be submitted to the Controller Examination.

Program	me Specific Outcomes (PSOs) (Honours Degree) After this programme the learners will be
able to:	
PSO1	Understand the stereochemistry and bonding in main group compounds.
	Acquire knowledge about substitution reactions and reaction mechanism of octahedral
	complexes.
	Understand the electronic spectra of transition metal complexes and cluster compound.
PSO2	Students will acquire practical knowledge about inorganic, organic and physical chemistry
	experiments.
PSO3	Understand all the concepts of symmetry and group theory. Will also be able to master X-ray and
	electron diffraction.
PSO4	Understand pericyclic reactions, their classification and mechanism. Also knowledge about basics
	of photochemistry along with photochemistry of organic compounds would be gained.
PSO5	Learn and appreciate the concepts from basic quantum to advanced quantum chemistry and their
	applications
PSO6	Gain knowledge about the functions and significance of cell.
	Master the concepts of mathematical functions, differentiation, integrations and other
	fundamental mathematics that is involved in chemistry.
PSO7	Understand stereochemistry, reaction intermediate, reaction mechanism and its applications.
PSO8	Acquire knowledge and skills in inorganic, organic synthesis and experimentally verify different
	adsorption isotherm.
PSO9	Get knowledge of bio inorganic, bioorganic and biophysical chemistry.
PSO10	Understand metal ligand bonding, inorganic polymer chemistry and polymer characterization
	techniques.
PSO11	Masters the basics of solid-state chemistry. Understand the synthesis and applications of organic
	solids
PSO12	Acquire knowledge in basic physical and industrial chemistry.
PSO13	Understand the chemical processes taking place in environment and chemistry of toxic chemical
	and pollutant.

Semester-VII Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC COURSE (DSC 7) Advanced Chemistry I (Theory) Advanced Experimental Chemistry -I (Practical)

No. of Hours- 75

C),

(A,

В,

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

			Credit distribution of the Course Eligibility				Pre-requisite of
Cou	rse Title	Credits	Lecture	Tutorial	Practical/Practice	criteria	the course (if any)
	Advanced						
	mistry I						
(T	heory)						N 701
		4	3	-	1	Chemistry	Nil
	Advanced in Bachelor Experimental of Science						
_	mistry -I					of Science	
	actical)						
(11	acticaly	BAC	HELOR C	L DF CHEMI	STRY WITH HON	OURS	
Program	me: Bacheloi				Year: IV	<u> </u>	Semester: VII
							Paper: DSC 7
	Chemistry						
Course:			Course	Title: Adv	anced Chemistry I		
	Outcomes:		1 •	.1 . 1 .	1111 11 .		
	-				s will be able to:	1	
	1	_			ra of transition metal	complexes	
	earn electronic	_			c molecules of chemical reactions.		
			_		dynamics and its relat	_	
• D Credits:		ements of	symmetry,	point grou	ps, orthogonality theo Discipline Speci		ter table
	ırks: As per U	Inivorcit	v rulos		Min. Passing Ma		nivorcity rules
Unit	Ks. As per c	JIIIVEI SIL	y i uies	Topic	Willia 1 assing Wi	arks. As per U	No. of Hours
Unit I			0.FD 1:1		•		110. 01 110419
	Electronic S	pectra o	t Transitio	n Metal Co	omplexes:		
	a) Introducti	on, types	of transiti	on, factors	affecting band width	and intensity,	
	spectroscopic ground state terms (Russell Saunders coupling/ L-S						
	coupling/Spin orbit coupling), determination of spectroscopic terms, atomic						
					ntation, Mullikan teri		
				-	al and tetrahedral fiel	`	
		_			d ¹ -d ¹⁰ octahedral a		
	- ′		` -		te) and their relaxation		
	of the electi	ronic spe	ectrum of	a -a octa	hedral and tetrahedr	ai complexes.	

Inter-electronic repulsion parameters-Racah parameters

		9
	Nephelauxetic effect. Ground state terms symbol of transition metal complexes. Tanabe Sugano diagram ($d^1 - d^9$ octahedral complexes). Application of Tanabe-Sugano diagram- Calculation of B, Δ_o , β . Spin-crossover in coordination compounds. Charge transfer spectra- Introduction, types, factors affecting. spectroscopic method of assignment of absolute configuration in optically active metal chelates and their stereochemical information, magnetic properties- magnetic moment, orbital contribution to magnetic moment. b) Electronic angular momentum in diatomic molecules (classification of states)- calculation of states	
Unit II	Reaction Intermediates in Chemical reactions: Carbocations: Classical and non-classical, neighbouring group participation, molecular rearrangements (Wagner-Meerwein rearrangement, Benzilic acid rearrangement, Schmidt reaction), stability and reactivity of bridge-head carbocations. Carbanions: Generation, structure and stability, and their general reactions (Claisen, Wittig and Mannich reaction).	11
	Free Radicals: Generation, structure, stability, types of free radical reactions, free radical substitution mechanism, mechanism at an aromatic substrate, neighbouring group assistance. Allylic halogenation (NBS), oxidation of aldehydes to carboxylic acids, autooxidation. Carbenes: Formation and structure, reactions involving carbenes (Reimer Tiemann reaction). Nitrenes: Generation, structure and reactions of nitrenes. Benzyne and cine substitution reaction	
Unit III	Advanced Thermodynamics-I: Laws of thermodynamics: Fundamental concepts, state and path dependent functions, determination of work done, enthalpy change, and internal energy change in reversible and irreversible expansion and compression, zero, first, second law of thermodynamics and their applications, entropy and its calculations, Nernst heat theorem and third law of thermodynamics, residual entropy	7
Unit IV	Advanced Thermodynamics-II: Free energy and its calculation, properties of Helmholtz free energy and Gibb's free energy, Clausius-Claypeyron equation, chemical potential and entropies. Partial molar properties; partial molar free energy, partial molar volume and chemical potential and their significance, Gibbs-Duhem equation, Concept of fugacity and its determination, chemical potential and fugacity, thermodynamic functions of mixing.	6
Unit V	Symmetry and Group Theory: Symmetry elements and symmetry operations, definitions of group and subgroup and their characteristics, relation between orders of and subgroup and their characteristics, relation between orders of a finite group and its subgroup. Conjugacy relation and classes of symmetry operations, point symmetry (or group) and its classification, Schonflies symbols, representation of group by matrices (representation for the C_n , C_{nv} , C_{nh} etc. groups to be worked out explicitly),	6

products of symmetry operations. Character of a representation. The great orthogonality theorem (without proof) and its importance. Character tables and their use in spectroscopy.

Recommended Readings:

- F. A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advance Inorganic Chemistry, Sixth Edition, John Wiley & Sons, New York, 2003.
- J. D. Lee, Concise Inorganic Chemistry, Fifth Edition, Wiley India, 2012.
- Atkins, Overton, Rourke, Weller and Armstrong, Inorganic Chemistry, Oxford University Press.
- J. E. Huheey, E. A Keiter and R. L. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, Fourth Edition, Pearson Education, 2003.
- W. W. Porterfield, Inorganic Chemistry: A Unified Approach, Elsevier.
- G. Wulfsberg, Inorganic Chemistry, Viva Books.
- G. L. Miessler and D. A. Tarr, Inorganic Chemistry, Pearson Education.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online content:

https://nptel.ac.in/courses/104/106/104106089/

http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000005CH/P000658/M014009/ET/1456899

566CHE P3 M5 etext.pdf

http://ddugu.ac.in/epathshala content1.aspx

https://www.uou.ac.in/sites/default/files/slm/BSCCH-301.pdf

https://nptel.ac.in/courses/104/106/104106064/

https://www.youtube.com/watch?v=bsfMa1nwNEw&list=PLmxSS9XYst21Z1kmeqDbVZM6lp-

RWSWIo

https://www.youtube.com/watch?v=keoaaCXmUJo&list=PLmxSS9XYst22ylDk1NOSmCLA-

19X7xTzh

https://www.youtube.com/watch?v=JbPvMNIcdf8&list=PLmxSS9XYst22VQmOe6CFkXqAjPtCCDg6O

https://www.youtube.com/watch?v=zUwbVaBaxTY&list=PLmxSS9XYst227ymEa_ovzDf7xs8snXlRp

https://www.youtube.com/watch?v=9oQcm281TT0&list=PLmxSS9XYst22B6gnqyEAx7R1A4Lqu3nmf

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-cy19/

https://onlinecourses.nptel.ac.in/noc22 cy02/preview

https://nptel.ac.in/courses/104/105/104105033/

https://egyankosh.ac.in/bitstream/123456789/15794/1/Unit-7.pd

https://www.hhrc.ac.in/ePortal/Chemistry/IImscchem-18pche3-unit1-sv.pdf

http://www.du.edu.eg/upFilesCenter/sci/1596861612.pdf

BACHELOR OF CHEMISTRY WITH HONOURS						
Programme:	Bachelor	of	Chemistry	with	Year: IV	Semester: VII
Honours			_			Paper: DSC
Subject: Cher	Subject: Chemistry					

Subject: Chemistry

Course Title: Advanced Experimental Chemistry -I Course: DSC (Practical)

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- Understand the laboratory methods and tests related to inorganic mixture analysis including the salts of normal and rare-earth elements and insoluble salts.
- Also, they can understand the quantitative estimation of organic molecules, viscosity constant and activation energy.
- Qualitatively estimate cations and anions in samples.
- Quantitative estimation of percentage of hydroxyl groups, amines/ phenolic contents in organic compounds.
- Determine of iodine and saponification values of an oil sample.
- Determine of DO, COD and BOD of water samples.

Credits:1	Discipline Specific Course						
Max. Ma	rks: As per University rules Min. Passing Marks: As per Univ	ersity rules					
Unit	it Topic						
Unit I	Laboratory hazards and safety precautions	6					
Unit II	Inorganic Chemistry						
	(i) Inorganic Salt Analysis: Qualitative analysis of mixtures of salt	s					
	containing six radicals including Rare-earth element salts (two rar	e 8					
	element ions), interfering radicals, other anions, which have not been don	e					
	in under graduate practical and insolubles and simple salts						
	(ii) Determination of DO, COD and BOD of water sample.						
	(iii) Determination of organic carbon in soil						
	(iv) Estimation of Na/K/Ca in water/aerated drinks/soil using flam	e					
	photometer						
	(v) Estimation of alkali content in antacid tablets.						
Unit III	Organic Chemistry						
	i. Determination of the percentage of number of hydroxyl groups in a	n					
	organic compound by acetylation method						
	ii. Estimation of amines/ phenols using bromate-bromide solution/ of	or 8					
	acetylation method.	· · ·					
	iii. Determination of Iodine and Saponification values of an oil sample.						
Unit IV	Physical Chemistry						
	(i) Determination of the velocity constant of acid catalyzed hydrolysis of	of					
	an ester.						
	(ii) Determination of activation energy of a reaction.	8					
	(iii) Determination of Frequency factor of a reaction by kinetic studies.						
	(iv) Validity of Arrhenius equation.						
	(v) Determination of the effect of change in temperature on rate constant of	of					
	a reaction.						
	(vi) Determination of the effect of change in concentration of the reactants o	n					
	rate constant of a reaction.						

- (vii)Determination of the effect of change in concentration of the catalyst on rate constant of a reaction.
- (viii) Determination of the effect of change in temperature on rate constant of a reaction.
- (ix) Determination of the effect of change in concentration of the reactants on rate constant of a reaction.
- (x) Determination of the effect of change in concentration of the catalyst on rate constant of a reaction.
- (xi) Determination of the effect of change in ionic strength on the rate constant of a reaction.
- (xii)Determination of the rate constant for the oxidation of iodide ions by hydrogen peroxide.

Note: Allocation of marks - External assessment: Total marks 75 (Inorganic exercise 20; Organic exercise 20; Physical exercise 20; Viva 15); Internal assessment: Total marks 25 (Record 15; attendance 10).

Recommended Readings:

- Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5.
- Harris, D.C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis,
- Ditts, R.V. Analytical Chemistry: Methods of separation. Van Nostrand, New York, 1974.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Suggested equivalent online content:

https://www.labster.com/chemistry-virtual-labs/

https://www.vlab.co.in/broad-area-chemical-scienceshttp://chemcollective.org/vlabs

Semester-VII Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC ELECTIVE (DSE 7 A) ADVANCED INORGANIC CHEMISTRY

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit	distributi	on of the Course	Eligibility	Pre-requisite of	
		Lecture	Tutorial	Practical/Practice	criteria	the course (if	
						any)	
DSE: Advanced					Chemistry		
Inorganic	4	4	-	-	in	-	
Chemistry					Bachelor		
					of Science		
BACHELOR OF CHEMISTRY WITH HONOURS							

Programme:	Bachelor	of	Chemistry	with	Year: IV	Semester: VII
Honours						Paper: DSE 7 A
Subject: Cher	nistry					

Course: DSE 7A Course Title: Advanced inorganic chemistry

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- Understand the stereochemistry and bonding in main group compounds and simple reactions of covalently bonded molecules
- Learn about the substitution reactions in square planar complexes.
- Understanding reaction mechanism of octahedral complexes
- To determine the electronic angular momentum in diatomic molecules- calculation of States.

Credits	Discipline Specific Elective 7A	
Max. M	arks: As per University rules Min. Passing Marks: As per Uni	versity rules
Unit	Торіс	No. of Hours
Unit I	Stereochemistry and Bonding in Main Group Compounds: Hybridization, Isovalent hybridization, Drago Rule, Bent rule, its applications and energetics of hybridization, some simple reactions of covalently bonded molecules (Atomic inversion, Berry pseudorotation, nucleophilic substitution reactions, free radical mechanism).	15
Unit II	Reaction Mechanism of Octahedral Complexes I: Energy profile of a reaction, reactivity of metal complexes, kinetic application of valence bond and crystal field theories, kinetics of octahedral substitution, acid hydrolysis, factors affecting acid hydrolysis, base hydrolysis, conjugate base mechanism, anation reactions, reactions without metal ligand bond cleavage.	10
Unit II	Reaction Mechanism of Octahedral Complexes II: Redox reactions, electron transfer reactions, mechanism of one electron transfer reactions, outer-sphere type reactions. Complimentary and non-complimentary electron transfer reactions, cross reactions and Marcus-Hush theory, inner sphere type reactions.	10
Unit IV	Substitution Reactions of Square Planar Complexes: Substitution reactions in square planar complexes: Types, mechanism, potential energy diagrams, transition states and intermediates. Factors affecting the substitution reaction. <i>Trans</i> effect and its applications in synthesis of complexes, theories of <i>trans</i> effect.	10
Unit V	PROBLEM SOLVING BASED ON THE ABOVE THEORY	15

Recommended Readings:

- F.A. Cotton, Chemical Application of Group Theory, Wiley.
- D. C. Harris, Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy, Dover Publications, New York.
- P. K. Bhattacharya, Group Theory and its Chemical Applications, Himalaya Publishing House,

Mumbai.

• Gurdeep Raj, Ajay Bhagi and Vinod Jain, Group Theory and Symmetry in Chemistry, Krishna Prakashan Media (P) Ltd., Meerut.

Suggested Continuous Evaluation Methods: Since the class is conceived as learner-centric and built around tasks that require learners to actively use various language skills, formative assessment can and should be used extensively. Oral presentations, peer interviews, and group tasks can be used for this purpose. The end-semester written examination will test all the areas targeted in the course.

Suggested equivalent online courses:

https://nptel.ac.in/courses/113/106/113106069/

https://onlinecourses.nptel.ac.in/noc20_mm22/preview

https://nptel.ac.in/courses/112/106/112106223/

https://nptel.ac.in/courses/104/104/104104080/

https://nptel.ac.in/courses/104/101/104101094/

https://onlinecourses.nptel.ac.in/noc22 cy28/preview

Semester-VII

Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC ELECTIVE (DSE 7B) ADVANCED ORGANIC CHEMISTRY

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligi	bility	Pre-requisite of	
		Lecture	Tutorial	Pra	ctical/Practice	crit	eria	the course (if any)
DSE: Advanced Organic chemistry	4	4	-		-	Chen in Bac of Sc	•	-
	B	ACHELO	R OF CHE	CMIS	TRY WITH HO	ONOUF	RS	
Programme: Bac	Programme: Bachelor of Chemistry with Honours Year: IV Semester: VII Paper: DSE 7B							
Subject: Chemistry								
Course: DSE 7B Course Title: Advanced Organic chemistry								

Course outcome:

- This course will provide a deep knowledge of reaction mechanism. After completion of this course, the students will be able to understand the mechanism and stereochemistry of electrophilic, & nucleophilic substitution reactions and elimination reaction.
- Study of the name reactions and the mechanism and stereochemistry of all the mentioned name reactions will enhance student's skill to understand the various important methods of synthesizing compound which are industrially important.

related to these industries.

Credits	4 Compulsory	
Unit	Contents	Number of Hours
Unit I	Reaction mechanism-I: Aliphatic Electrophilic Substitution: Biomolecular mechanisms- S_E2 and S_E1 . The S_E1 mechanism, electrophilic substitution accompanied by double bonds shifts. Effect of substrates, leaving group and the solvent polarity on the reactivity.	9
	Aliphatic Nucleophilic Substitution : The S_N^2 , S_N^1 , mixed S_N^1 and S_N^2 , S_N^1 and SET mechanisms. Nucleophilic substitution at an allylic, aliphatic trigonal and a vinylic carbon. Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis and ultrasound,	
	ambident nucleophile, regioselectivity. Neighbouring group mechanism, neighbouring group participation by mand o bonds, anchimeric assistance. Classical and nonclassical carbocations, phenonium ions, norbornyl system. Neighbouring group assistance in substitution reactions. Substitution reactions involving non-classical carbocations.	
Unit II	Reaction mechanism-II: Elimination reactions: The E2, E1 and E1cB mechanisms and their spectrum. Orientation of the double bond. Reactivity-effects of substrate structures, attacking base, the leaving group and the medium. Mechanism and orientation in pyrolytic elimination	06
Unit III	Reaction mechanism-II: Aromatic Nucleophilic Substitution: The S _N Ar, S _N ¹ , benzyne and S _N ¹ mechanism. Reactivity-effect of substrate structure leaving group and attacking nucleophile. The Von-Richter, Sommelet-Hauser and Smiles rearrangements. Aromatic Electrophilic Substitution: The arenium ion mechanism, orientation and reactivity, energy profile diagrams. The ortho/para ratio, ispo attack, orientation in other ring systems. Diazonium coupling.	15
Unit IV	Name Reactions and their applications: Vilsmeier reaction, Gattermann-Koch reaction, Sandmeyer reaction, Hunsdiecker reaction, Michael reaction. Sharpless asymmetric epoxidation, Aldol, Knoevenagel, Claisen, Mannich, Benzoin, Perkin and Stobbe reactions, Wittig reaction, Heck reaction, Still reaction, Sonogarishira, Negishi coupling, Grubbs Catalyst.	15
Unit V	SYNTHESIS AND IDENTIFICATION OF RELATED PROBLEMS	15

Recommended Readings:

- i. Jerry March, Advanced Organic Chemistry Reactions, Mechanism and Structure, John Wiley.
- ii. RT Morrison and RN Boyd Organic Chemistry, , Prentice Hall.
- iii. CK Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press.
- iv. SM Mukherji and SP Singh, Reaction Mechanism in Organic Chemistry, Macmillan.
- v. D Nassipuri, Stereochemistry of Organic Compounds, New Age International
- vi. PS Kalsi, Stereochemistry of Organic Compounds, New Age International.

- viii. FA Carey and RJ Sundberg, Advanced Organic Chemistry, Plenum.
- ix. Modern Organic Reactions, HO House, Benjamin.
- x. Jonathan Clayden, Nick Greeves, and Stuart Warren, Organic Chemistry, Oxford Chemistry press.

Suggested online links:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

https://nptel.ac.in/content/storage2/courses/104103022/download/module5.pdf

https://nptel.ac.in/content/storage2/courses/104103022/download/module9.pdf

https://nptel.ac.in/content/storage2/courses/104101005/downloads/LectureNotes/chapter%208.pdf https://nptel.ac.in/content/storage2/courses/104101005/downloads/LectureNotes/chapter%207.pdf

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Semester-VII

Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC ELECTIVE (DSE 7C) ADVANCED PHYSICAL CHEMISTRY

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite	
		Lecture	Tutorial	Practical/Practice	criteria	of the course	
						(if any)	
DSE: Advanced					Chemistry		
Physical Chemistry	4	4	_	-	in	-	
					Bachelor		
					of Science		
	BACHEI	OR OF C	HEMISTR	Y WITH HONOUR	S	·	
Programme: Bachelor o	f Chemistr	y with Ho	nours	Year: IV	Sen	nester: VII	
Paper: DSE 70						er: DSE 7C	
Subject: Chemistry							
Course: DSE 7C Course Title: Advanced Physical Chemistry							

Course Outcomes:

- This paper provides detailed knowledge of surface, polymer, electro and quantum chemistry.
- Upon successful completion of this course, the students should be able to describe Gibb's adsorption isotherm, Freundlich and Langmuir adsorption isotherm, BET method, applications of polymers, Debye-Huckel theory, Debye-Huckel-Onsagar theory and concept of quantum chemistry.

Credits:4	Compulsory	
Unit	Contents	No. of Hours
Unit I	Surface Chemistry: Gibb's adsorption isotherm, Freundlich and Langmuir	7
		1

		17
	adsorption isotherms, determination of free energy of adsorption, BET theory for multilayer adsorption with derivation, determination of surface area using BET method, catalytic activity on solid surfaces, macromolecules,	
Unit II	Polymer Chemistry: Polymers and their general applications, classification of polymers, chain configuration of polymers, liquid crystals and their applications. Molecular mass, number and mass average molecular mass, molecular mass determination using osmometry, viscometry, diffusion and light scattering methods.	8
Unit III	Advanced Electrochemistry: Determination of activity coefficient, Debye-Huckel theory of strong electrolytes with derivation, ionic atmosphere and thickness of ionic atmosphere, Debye-Huckel-Onsagar theory, theory of conduction, Onsagar equation including mathematical deduction.	10
Unit IV	Advanced Quantum Chemistry: de-Broglie concept and de-Broglie equation, physical interpretation and properties of wave functions, Linear, Laplacian, Linear-momentum and Hamiltonian operators, postulates of quantum mechanics, eigen values, eigen functions, derivation of the Schrodinger's wave equation, concept of cartesian and spherical coordinates. Schrodinger's wave equation general and detailed discussion on the applications of Schrodinger's wave equation to some model systems <i>viz.</i> particles in a 1D-, 3D- box, harmonic oscillator, rigid rotator and hydrogen atom.	20
Unit V	PROBLEM SOLVING BASED ON ABOVE UNITS	15

Recommended Readings:

- R. Puri, L. R. Sharma and M. S. Pathnia, Physical Chemistry, Milestone Publisher & Distributors, New Delhi.
- K. L. Kapoor, Physical Chemistry. Macmillan *Publishers* India Limited.
- K. J. Laidler, Kinetics, Pearson Education India.

Suggested online links:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

https://books.google.co.in/books/about/Basics_of_Polymer_Chemistry.html?id=ciRHDwAAQBAJ&redir_esc=v

 $\underline{https://www.google.co.in/books/edition/Applied_Colloid_and_Surface_Chemistry/FGyIJ1Z5Tr4C?hl=en\&gbpv=1\&dq=SURFACE+CHEMISTRY\&printsec=frontcover$

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/ home assignments/ group discussions/ oral presentations	15 marks
Overall performance throughout the semester, Discipline, participation in different activities) & Attendance	10 marks

Course prerequisites: To study this course, a student must have had passed theory papers of VII semester.

Suggested equivalent online courses:

https://onlinecourses.nptel.ac.in/noc21 cy45/preview

https://onlinecourses.nptel.ac.in/noc21 ch48/preview

https://onlinecourses.nptel.ac.in/noc20 cy27/preview

https://onlinecourses.nptel.ac.in/noc21 cy20/preview

https://www.classcentral.com/course/swayam-chemistry-i-introduction-to-quantum-chemistry-and-

molecular-spectroscopy-3981

https://www.classcentral.com/course/swayam-quantum-chemistry-of-atoms-and-molecules-19982

https://nptel.ac.in/courses/104/108/104108057/

https://nptel.ac.in/courses/115/101/115101107/

https://nptel.ac.in/courses/104/101/104101124/

https://nptel.ac.in/courses/104/105/104105128/

Semester-VII Bachelor of Chemistry with Honours

GENERIC ELECTIVE (GE 7A)- Biology for Chemists

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite of the	
		Lecture	Tutorial	Practical/Practice	criteria	course (if any)	
GE:					Chemistry	-	
Biology for	4	4	_	_	in Bachelor		
Chemists					of Science		
		BACHEI	OR OF C	HEMISTRY WITH	HONOURS		
Programme:	Bacheloi	of Ch	emistry v	with Year: IV		Semester: VII	
Honours						Paper: GE 7A	
Subject: Cher	Subject: Chemistry						
Course: GE 7	Course: GE 7A Course Title: Biology for Chemists						
Course Outco	mes:	•					

Upon successful completion of this course, the students will be able to:

- Understand the functions and significance of cell organelles. This course will make them appreciate the structural and functional aspects of cell and organelles.
- Have the basic understanding of the metabolic processes in biological system which will help them to have better grip on biochemistry.

Credits:	4	Generic Electives 2	
Max. Marks: As per University rules		Min. Passing Marks: As per University rules	
Unit	Topic		No. of Hours
Unit I	Cell as Unit of Life: The cell theory; eukaryotic cells; cell size and shape; Euk	• •	
	Cell Membrane and Cell Wall: The formed of membrane structure; faces of the membranes; cell wall:	nbrane, selective permeability of	_

		19
Unit II	Cell Organelles-I: Mitochondria: Structure, marker enzymes,	
	composition; function. Chloroplast: Structure, marker enzymes,	
	composition; semiautonomous nature, chloroplast DNA. ER, Golgi body	15
	and Lysosomes: Structures and roles of ER, golgibody and lysosomes.	
Unit III	Cell Organelles-II: Nucleus: Nuclear Envelope- structure of nuclear	
	pore complex; chromatin; molecular organization, DNA packaging in	
	eukaryotes, euchromatin and heterochromatin, nucleolus and ribosome	15
	structure (brief). Nacleoside and Nacloeotides and DNA structure.	
Unit IV	Metabolism: Introduction, basal metabolic rate (BMR), Carbohydrate	
	protein and lipid metabolism, cell respiration, amaerabic respiration,	
	aerobic respiration, formation of acetal COA, citric acid cycle, electron	
	transport system, adenosinetnphosphate, mechanism. ATP generation.	15

Recommended Readings:

- P. H. Raven, Biology, Tata MacGraw Hill.
- P. Sheeler, Cell and Molecular Biology, John Wiley.
- N. A. Campbell, Biology Pearson.
- L.Styer, Biochemistry, Freeman & Co.

Outlines of biochemistry. Fourth edition (Conn, Eric E.; Stumpf, P. K.). Wiley India Pvt. Limited

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online courses:

https://nptel.ac.in/courses/102/103/102103012/

https://nptel.ac.in/content/storage2/courses/102106025/Mod%201/Lec-1.pdf

https://books.google.co.in/books/about/Biology for Chemists.html?id=N4nToAEACAAJ&redir esc=y

Semester-VII **Bachelor of Chemistry with Honours**

GENERIC ELECTIVE (GE 7B) Mathematics for Chemists

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course	Credits	Credit distribution of the Course			Eligibility	Pre-requisite of the	
Title		Lecture	Tutori	Practical/Practic	criteria	course (if any)	
			al	e			
GE 7B:					Chemistry		
Mathematics	4	4	-	-	in Bachelor	-	
for Chemists					of Science		
BACHELOR OF CHEMISTRY WITH HONOURS							

Programme:	Bachelor	of	Chemistry	with	Year: IV	Semester: VIII
Honours						Paper: GE 7B

Subject: Chemistry

Course: GE 7B Course Title: Mathematics for Chemists

Course Outcomes:

Upon successful completion of this course, the students will be able to:

• Understand the concept of mathematical functions, graphs, differentiations, integration and mathematical relations. It will help them to have better grip on mathematics involved in chemistry.

Credits:4		Generic Electives 2	
Max. Ma	rks: As per University rules	Min. Passing Marks: As per Univers	sity rules
Unit	Тор	ic	No. of Hours
Unit I	Mathematical Functions: Polynomia trigonometrically function. inverse trig and antilogarithms	1 1	10
Unit II	Curve Sketching/Graph: Inclination of equation of straight line, slope-intercept form, Intercept form, Parallel and perpent	ot form, slope point form Two-point	10
Unit III	Differentiation: Differentiation form minimum, Rules of finding maxima and reciprocal relation, exact and in exact differential. Integration: Methods of integrations, s successive, reduction, integration formul	minima, Partial differentiation, Euler differentials, Chain rule for partial ubstitution, partial function, by parts,	20
Unit IV	Fundamentals of Mathematical Relational Probability, vectors mathematical relational Vectors, Matrices, Determinants, Capproximation, Roots of quadratic equal Coordinate systems in three dimensions of the coordinate systems in the coordinate systems in the coordinate systems in the coordinate syst	omplex number, Series, Stirling ation. Methods of solving equation.	20

Recommended Readings:

- D.A. McQuarrie, Mathematics for physical Chemistry University Science Books.
- R. Mortimer, Mathematics for Physical Chemistry, 3rd Ed. Elsevier.
- E. Steiner, The Chemical Maths Books, Oxford University Press.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online courses:

https://www.jcu.edu.au/ data/assets/pdf file/0004/115897/Maths-for-Chemistry.pdf

https://www.birmingham.ac.uk/Documents/college-eps/college/stem/Student-Summer-Education-Internships/Maths-for-Chemists-Booklet.pdf

Semester-VIII

Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC COURSE (DSC 8) Advanced Chemistry II (Theory) Advanced Experimental Chemistry -II (Practical)

No. of Hours-75

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSC 8: Advanced Chemistry II Advanced					Chemistry in Bachelor	
Experimental Chemistry -II (Practical)	4	3	-	1	of Science	-

BACHELOR OF CHEMISTRY WITH HONOURS

Programme: Bachelor of Chemistry wit	h Honours Y	'ear: IV	Semester: VIII Paper: DSC 8
Subject: Chemistry			
Course: DSC 8	Course Title: Ac	dvanced Chemistry II	

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- Understand stereoselectivity, stereospecificity, regioselectivity, chemo selectivity, enantiomeric and diastereomeric excess.
- understand about the metal ligand bonding and cluster compounds
- a brief introduction about the stereochemistry of organic molecules
- to know about the higher order reactions, collision theory and arrhenius equation
- understand the thermodynamics of non ideal solutions

Credits:3		Discipline Specific Course 8	
Max. Ma	ks: As per University rules	Min. Passing Marks: As per U	University rules
Unit	Topic		No. of Hours
Unit I	Metal-Ligand Bonding: Sigma bonding	•	10
	Classification of metal valence orbitals into si	gma symmetry, formation of	10
	ligand group orbitals (LGOs) of sigma symme	• •	
	orbitals of sigma symmetry, construction of mo	lecular orbital energy level	

		22
	diagram involving only sigma bond contribution from ligands, pi bonding in	
	octahedral complexes: Classification of metal valence orbital into pi	
	symmetry, Formation of LGOs of pi symmetry. Formation of pi MOs and	
	construction of molecular orbital energy level diagram involving sigma and	
	pi contribution from pi donor ligands, Sigma and pi bonding in tetrahedral	
	complexes and square planar complexes	
Unit II	Cluster Compounds: Introduction, classification, higher boranes,	_
	carboranes, metalloboranes and metallocarboranes. Metal carbonyl and	5
	metal halide clusters. Clusters with metal-metal multiple bonds. Electron	
	counting in clusters (Wade's rule), Isolobal analogy.	
Unit III	Stereochemistry	
	Axial and planar chirality and helicity (P & M); stereochemistry and	
	configurations of allenes, spiranes, alkylidene, cycloalkanes, adamantanes,	15
	catenanes, biphenyls (atropisomerism), bridged biphenyls, ansa compounds	13
	and cyclophanes. Topicity and prostereoisomerism: Topicity of ligands and	
	faces and their nomenclature, stereogenicity, cyclostereoisomerism;	
	configurations, conformations and stability of cyclohexanes, (mono and di	
	Substituted), cyclohexenes, cyclohexanones, halocyclohexanones, decalines,	
	decalols, decalones. Asymetric induction; Cram's, Prelog's and Horeaus	
	rules. Dynamic stereochemistry (cyclic and acyclic). Stereochemistry of	
	compounds containing N, S and P. stereospecificity, regioselectivity and	
	chemoselectivity. Enantiomeric and diasteriomeric excess.	
	Chemical Dynamics: Third and general order reactions, Experimental	
Unit IV	methods for kinetic studies, viz; conductometric, potentiometric and	
	spectrophotometeric methods, effect of temperature on rate of reaction,	
	Arrhenius equation. Chemical molecular dynamics: Collision theory of	10
	reaction rates, steric factor, activated complex theory, comparison of	10
	collision and activated complex theories, ionic reactions, kinetic salt effects,	
	steady state concept, kinetic and thermodynamic control of reactions.	
	Kinetics of gaseous reactions on solid surface, unimolecular and bimolecular	
	surface reactions, kinetics of condensation and addition polymerization	
	reactions, mechanism of H ₂ -Br ₂ , H ₂ -Cl ₂ reactions, decomposition of the	
	following compounds: acetaldehyde, ozone and H ₂ O ₂ .	
IIn:4 V		
Unit V	Thermodynamics of Non-ideal Solutions: Non-ideal systems; Excess	5
	functions for non-ideal solutions, activity, activity coefficient, Debye-Hückel	3
	theory for activity coefficient of electrolytic solutions, determination of	
	activity coefficients, ionic strength.	

Recommended Readings:

- Jerry March, Advanced Organic Chemistry Reactions, Mechanism and Structure, John Wiley.
- R. T. Morrison and R. N. Boyd, Organic Chemistry, Prentice Hall.
- K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press.
- S. M. Mukherji and S. P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan.
- Nasipuri, Stereochemistry of Organic Compounds, New Age International
- P. S. Kalsi, Stereochemistry of Organic Compounds, New Age International.

- S. M. Mukherjee, Pericyclic Reactions, Macmillan, India.
- F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Plenum
- Benjamin, Modern Organic Reactions, HO House
- Ernest L. Eliel and Samuel H. Wilen, Stereochemistry of Organic Compounds, Wiley Indi
- Ernest L. Eliel, Stereochemistry of Carbon Compounds. Tata McGraw Hill.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online content:

https://nptel.ac.in/courses/104/106/104106127/

https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-cy25/

https://onlinecourses.swayam2.ac.in/ugc19 ch01/preview

https://nptel.ac.in/courses/104/101/104101005/

https://nptel.ac.in/courses/104/106/104106077/

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

https://nptel.ac.in/content/storage2/courses/104103022/download/module5.pdf

https://nptel.ac.in/content/storage2/courses/104103022/download/module9.pdf

https://nptel.ac.in/content/storage2/courses/104101005/downloads/LectureNotes/chapter%208.pdf

BACHELOR OF CHEMISTRY WITH HONOURS

Programme: B	achelor of Chemistry with	Honours Year: IV	Semester: VIII Paper: DSC 8
Subject: Chem	stry	·	
Course: DSC 8		Course Title: Advanced Exper	imental Chemistry -II
Course Outcon			
The students			
•	various inorganic compound		
		wo steps. This will include pho	otochemical and enzymatic
•	various organic compounds to physically verify different		
Credits:1	to physically verify differen	Discipline Specific F	Elective
	s per University rules		: As per University rules
Unit	<u></u>	Topic	No. of Hours
Unit I	Laboratory hazards and sa	fety precautions	06
Unit II	(A) Inorganic Compou	and Synthesis: Preparation of	selected
	inorganic compounds	s such as:	
	i. $[Ni(dmg)_2]$		
	ii. [Cu(NH ₃) ₄]SO ₄ .H ₂	QO	
	iii. Cis-K[Cr(C ₂ O ₄) ₂ (H	$H_2O)_2$	
	iv. Na[Cr(NH ₃) ₂ (SCN	J) ₄]	
	v. $[Mn(acac)_3]$		08
	vi. $K_3[Fe(C_2O_4)_3]$		
	vii. Prussian Blue, Tun	mbull's Blue	

		24
	viii. Co[NH ₃) ₆][Co(NO ₂) ₆]	
	ix. Cis-[Co(trien)(NO ₂) ₂]Cl.H ₂ O	
	x. Hg [Co(SCN) ₄]	
	xi. [Co(py) ₂ Cl ₂]	
	xii. [Ni(NH ₃) ₆]Cl ₂	
	xiii. $K_3[Cr(C_2O_4)_3].3H_2O$	
	(B) Quantitative estimation of metal ions by complexometric	
	titration, direct and / or back titration, use of masking agents.	
Unit III	Organic Chemistry	
	(I) Green Synthesis	
	i. Photoreduction of benzophenone to benzopinacol in 2-	
	propanol	
	ii. Conversion of Benzil to Benzilic acid	
	iii. Isomerization of Dimethyl maleate to Dimethyl fumrate	
	(II) Conventional methods of synthesis	
	(i)Photochemical synthesis of Benzpinacolonefrom Benzophenone	
	(ii) Beckmann rearrangement: Benzophenenone to Benzanilide	
	(iii)Benzilic acid rearrangement: Benzoin to Benzilic acid	
	(iv) Synthesis of heterocylic compounds:(a) Skraup synthesis:	08
	Preparation of quinoline from aniline	
	(v) Fischer indole synthsis: Preparation of 2-phenyl indole from	
	phenylhydrazine.	
	(III) Enzymatic synthesis	
	(i) Enzymatic reduction: Reduction of ethyl acetoacetate using	
	Baker's yeast to yield enantiomeric excess of S (+) ethyl-3-	
	hydroxybetanoate and determine its optical purity.	
	(ii) Biosynthesis of ethanol from sucrose.	
	(IV) Microwave synthesis	
	(i) Synthesis using microwaves	
	(ii)Alkylation of diethyl malonate with benzyl chloride	
	(iii) Synthesis using phase transfer catalyst	
	(iv) Alkylation of diethyl malonate or ethylacetoacetate with an	
	alkyl halide.	
	(V) Synthesis based on pharmaceutical intermediates /Drugs for eg.	
	Iodex	
Unit IV	Physical Chemistry:	
	(i) Validity of Arrhenius equation.	
	(ii) Flowing Clock reactions (Ref. Experiments in Physical	
	Chemistry by Showmaker).	
	(iii) Study of the adsorption of an acid by charcoal.	
	(iv) Validity of Freundlich's Adsorption isotherm.	08
	(v) Determination of Partition Coefficients.	VO

	23
(vi) Determination of molecular surface energy of a liquid by	
Stalagmometer method.	
(vii) Determination of association factor of the given liquid by drop-	
pipette method.	

Note: Allocation of marks - External assessment: Total marks 75 (Inorganic exercise 20; Organic exercise 20; Physical exercise 20; Viva 15); Internal assessment: Total marks 25 (Record 15; attendance 10). Students have to perform one practical from each section.

Recommended Readings

- Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5.
- Harris, D.C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Edition.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Suggested equivalent online content:

https://www.labster.com/chemistry-virtual-labs/ https://www.vlab.co.in/broad-area-chemical-sciences http://chemcollective.org/vlabs

Semester-VIII Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC ELECTIVE (DSE 8A)

Pericyclic Reactions and Photochemistry

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite of
		Lecture	Tutorial	Practical/Practic	criteria	the course (if
				e		any)
DSE: Pericyclic					Chemistry	
Reactions and	4	4	-	-	in Bachelor	-
Photochemistry					of Science	
	BAC	HELOR O	F CHEMIS	STRY WITH HON	OURS	
Programme: Bachel	lor of Che	mistry with	Honours	Year: IV		Semester: VIII
						Paper: DSE 8A
Subject: Chemistry						
Course: DSE 8A Course Title: Pericyc				icyclic Reactions an	d Photochem	istry
Course Outcomes:						

Upon successful completion of this course, the students will be able to:

- Acquire the knowledge of pericyclic and photochemical reactions.
- Apply laws of photochemistry to different types of photochemical reactions,

• Able to draw the Jablonskii diagram.

Max. Marks: As per University rules	Credits:4		Discipline Specific Elective		
Pericyclic Reactions I: Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3-butadiene, 1,3,5-hexatriene and allyl system. Classification of pericyclic reactions. Woodward-Hoffmann correlation diagrams. FMO and PMO approach. Electrocyclic reactions- conrotatory and disrotatory motions, 4n, 4n+2 and allyl system. Cycloadditions- antarafacial and suprafacial additions, 4n and 4n+2 systems. Pericyclic Reactions II: 2+2 addition of ketenes, 1,3-dipolar cycloadditions and cheleotropic reactions. Sigmatropic rearrangements- suprafacial and antarafacial shifts of H, Sigmatropic rearrangements. Claisen, Cope and Aza-Cope rearrangements. Fluxional tautomerism, Ene reaction. Unit III Basics of Photochemistry: Laws of photochemistry, electronically excited states-life times, Energy dissipation by radiative and non-radiative processes, Franck-Condon principle, Photochemical stages-primary and secondary processes. photo-physical reactions, Jablonskii diagram, photosensitization, quantum yield and its determination, fluorescence, phosphorescence and chemi luminiscence with suitable examples. Unit IV Photochemistry of Organic Compounds: Photochemistry of alkenes; cis-trans isomerization, ; photochemical additions; reactions (cyclic and acyclic); α,β-unsaturated ketones; β,γ-unsaturated ketones; cyclohexenones (conjugated, cyclohexadienones (cross conjugated & conjugated); paterno- Buchi reaction, photoreductions; photochemistry of aromatic compounds, isomerisations reactions ,					
refreyclic Reactions 1: Motecular orbital symmetry, Frontier orbitals of ethylene, 1,3-butadiene, 1,3,5-hexatriene and allyl system. Classification of pericyclic reactions. Woodward-Hoffmann correlation diagrams. FMO and PMO approach. Electrocyclic reactions- conrotatory and disrotatory motions, 4n, 4n+2 and allyl system. Cycloadditions- antarafacial and suprafacial additions, 4n and 4n+2 systems. Unit II Pericyclic Reactions II: 2+2 addition of ketenes, 1,3-dipolar cycloadditions and cheleotropic reactions. Sigmatropic rearrangements- suprafacial and antarafacial shifts of H, Sigmatropic rearrangements. Claisen, Cope and Aza-Cope rearrangements. Fluxional tautomerism, Ene reaction. Unit III Basics of Photochemistry: Laws of photochemistry, electronically excited states-life times, Energy dissipation by radiative and non-radiative processes, Franck-Condon principle, Photochemical stages-primary and secondary processes. photo-physical reactions, Jablonskii diagram, photosensitization, quantum yield and its determination, fluorescence, phosphorescence and chemi luminiscence with suitable examples. Unit IV Photochemistry of Organic Compounds: Photochemistry of alkenes; cis-trans isomerization,; photochemical additions; reactions (cyclic and acyclic); α,β-unsaturated ketones; β,γ-unsaturated ketones; cyclohexenones (conjugated, cyclohexadienones (cross conjugated & conjugated); paterno- Buchi reaction, photoreductions; photochemistry of aromatic compounds, isomerisations reactions,		Торіс		No. of Hours	
cycloadditions and cheleotropic reactions. Sigmatropic rearrangements- suprafacial and antarafacial shifts of H, Sigmatropic shifts involving carbon moieties, 3,3- and 5,5 sigmatropic rearrangements. Claisen, Cope and Aza-Cope rearrangements. Fluxional tautomerism, Ene reaction. Unit III Basics of Photochemistry: Laws of photochemistry, electronically excited states-life times, Energy dissipation by radiative and non-radiative processes, Franck-Condon principle, Photochemical stages-primary and secondary processes. photo-physical reactions, Jablonskii diagram, photosensitization, quantum yield and its determination, fluorescence, phosphorescence and chemi luminiscence with suitable examples. Unit IV Photochemistry of Organic Compounds: Photochemistry of alkenes; cis-trans isomerization, ; photochemical additions; reactions of 1,3- and 1,4-dienes; dimerization, Norrish type I & II reactions (cyclic and acyclic); α,β-unsaturated ketones; β,γ-unsaturated ketones; cyclohexenones (conjugated, cyclohexadienones (cross conjugated & conjugated); paterno- Buchi reaction, photoreductions; photochemistry of aromatic compounds, isomerisations reactions ,	Unit I	orbitals of ethylene, 1,3-butadiene, 1,3-Classification of pericyclic reactorrelation diagrams. FMO and Freactions- conrotatory and disrotatory system. Cycloadditions- antarafacial and system.	3,5-hexatriene and allyl system. ctions. Woodward-Hoffmann PMO approach. Electrocyclic y motions, 4n, 4n+2 and allyl	10	
excited states-life times, Energy dissipation by radiative and non-radiative processes, Franck-Condon principle, Photochemical stages-primary and secondary processes. photo-physical reactions, Jablonskii diagram, photosensitization, quantum yield and its determination, fluorescence, phosphorescence and chemi luminiscence with suitable examples. Unit IV Photochemistry of Organic Compounds: Photochemistry of alkenes; cis-trans isomerization, ; photochemical additions; reactions of 1,3- and 1,4-dienes; dimerization, Norrish type I & II reactions (cyclic and acyclic); α,β-unsaturated ketones; β,γ-unsaturated ketones; cyclohexenones (conjugated, cyclohexadienones (cross conjugated & conjugated); paterno- Buchi reaction, photoreductions; photochemistry of aromatic compounds, isomerisations reactions ,		cycloadditions and cheleotropic rearrangements- suprafacial and antara shifts involving carbon moieties, rearrangements. Claisen, Cope and Fluxional tautomerism, Ene reaction.	c reactions. Sigmatropic afacial shifts of H, Sigmatropic 3,3- and 5,5 sigmatropic d Aza-Cope rearrangements.	10	
alkenes; cis-trans isomerization, ; photochemical additions; reactions of 1,3- and 1,4-dienes; dimerization, Norrish type I & II reactions (cyclic and acyclic); α,β-unsaturated ketones; β,γ-unsaturated ketones; cyclohexenones (conjugated, cyclohexadienones (cross conjugated & conjugated); paterno- Buchi reaction, photoreductions; photochemistry of aromatic compounds, isomerisations reactions ,	Unit III	excited states-life times, Energy diss radiative processes, Franck-Condon p primary and secondary processes. phot diagram, photosensitization, quantum fluorescence, phosphorescence and ch	sipation by radiative and non- rinciple, Photochemical stages- to-physical reactions, Jablonskii n yield and its determination,	10	
photo Fries rearrangement of ester & anilidets, Barton reaction, Hoffmann- Loefller-Freytag reaction. Unit V PROBLEM BASED ON ABOVE SYLLABUS 15		alkenes; cis-trans isomerization, ; pho of 1,3- and 1,4-dienes; dimerization, (cyclic and acyclic); α,β-unsaturate ketones; cyclohexenones (conjugated conjugated & conjugated); paterno- B photochemistry of aromatic compour Dewar and prismanes in isomaerisate photo Fries rearrangement of ester Hoffmann- Loefller-Freytag reaction.	Norrish type I & II reactions ed ketones; β,γ-unsaturated ed, cyclohexadienones (cross suchi reaction, photoreductions; eds, isomerisations reactions, ions, singlet oxygen reactions, & anilidets, Barton reaction,		

Recommended Readings

- F.A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Parts A & B, Plenum: U.S.
- W. M. Horspool, Aspects of Organic Photochemistry, Academic Press.
- T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry Addison-Wesley Educational Publishers, Inc.
- J. March. Advanced Organic Chemistry, John Wiley & Sons.

- L. Stryer, Biochemistry, W. H. Freeman & Co. vi. P. A. Sykes, Guidebook to Mechanism in Organic Chemistry, Prentice-Hall
- Jerry March, Advanced Organic Chemistry Reactions, Mechanism and Structure, John Wiley.
- K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press.
- S. M. Mukherji and S. P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan. Page 8 of 42
- Nasipuri, Stereochemistry of Organic Compounds, New Age International
- P. S. Kalsi, Stereochemistry of Organic Compounds, New Age International.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online contents:

https://nptel.ac.in/courses/104106077

https://www.youtube.com/watch?v=Md1GS3vdYdA

https://www.youtube.com/watch?v=Ih7tQ7rY2Wc

Semester-VIII

Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC ELECTIVE (DSE 8B) Spectroscopic Techniques

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit	distributio	n of the Course	Eligibility	Pre-	
		Lecture	Tutorial	Practical/Practi	criteria	requisite of	
				ce		the course	
						(if any)	
DSE: Spectroscopic					Chemistry in		
Techniques	4	4	_	_	Bachelor of	_	
_					Science		
	BACHEI	OR OF C	HEMISTR	Y WITH HONOU	RS		
Programme: Bachelor	of Chemistr	y with Hor	nours	Year: I	V Semester: VIII		
į į						per: DSE 8B	
Subject: Chemistry							
Course: DSE 8B Course Title: Spectroscopic Tec					hniques		

Course outcomes:

• This course will add on the theoretical aspects of electron spin, nuclear magnetic resonance, infrared and UV spectroscopy along with mass spectrometry which will further help in structure elucidation of various compounds through numerical problems.

• This is essential for structure elucidation of known as well as novel compounds.

Credits:4 Discipline Specific Elective						
Max. Ma	rks: As per University rules Min. Passing Marks: As per Univer	rsity rules				
Unit	Contents	No. of Hours				
Unit I	Nuclear Magnetic Resonance Spectroscopy: Nuclear Spin, nuclear resonance, saturation, shielding of magnetic nuclei, chemical shift and its measurements, factors influencing the chemical shift. Deshielding, spin-spin interaction, factors influencing coupling constant (J). Classification (ABX, AMX, ABC, A ₂ B ₂ etc.), spin decoupling, basic idea about instruments, NMR studies of nuclei other than proton; Advantages of FT NMR. Use of NMR in medical diagnostics. NOE, simplification of complex spectra.	15				
Unit II	Mass Spectrometry: Introduction, ion production-EI, CI, FD and FAB, factors affecting fragmentation, ion analysis, ion abundance. Detectors-ECD, TCD and FID, Mass spectral fragmentation of organic compounds, common functional groups, molecular ion peak, metastable peak, McLafferty rearrangement. Nitrogen rule, examples of Mass fragmentation of class of organic compounds.	10				
Unit III	Infrared Spectroscopy: Instrumentation and simple handling. Selection rules, normal modes of vibration, group frequencies, overtones, hot bands, factors affecting the bond positions and intensities, Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines and carbonyl compounds (ketones, aldehydes, esters, amides, acids anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding, solvent effect on IR of gaseous, solids and polymeric materials. Simple applications, vibrational spectra of metal carbonyls.	15				
Unit IV	Ultraviolet and Visible Spectroscopy: Various electronic transitions (185 to 800 nm), Lambert-Beer's Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, diens, conjugated polyenes. Fieser-Woodward rules for conjugated diens and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds.	5				
Unit V	Interpretation of Organic Compounds Problems based on spectroscopic data viz. NMR, IR, UV Spectroscopy and Mass spectrometry.	15				

Books Recommended:

- Pavia, Lampman, Kriz, Spectroscopy, Books/Cole; Vyvyan
- PS Kalsi Spectroscopy of Organic Compounds, New Age International Publishers;
- Silverstein, Robert M.; Webster, Francis X.; Kiemle, Spectrometric Identification of Organic Compounds, John Wiley;
- ML Martin, JJ Delpeach and GJ Martin, Heyden, Practical NMR Spectroscopy,

- Colin N. Banwell and Elaine M. Mc Cash, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill.
- RJ Abraham, J Fischer and P Loftus, Introduction to NMR Spectroscopy, Wiley.
- DH Williams, I Fleming, Spectroscopic Method in Organic Chemistry: Tata MacGraw Hill.
- Willard Merritt, Dean, Settle, Instrumental Method of Analysis: Seventh Edition, CBS, Publication.

Suggested online links:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, includes or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/ home assignments/ group discussions/ oral presentations	15
Overall performance throughout the semester, Discipline, participation in different activities) & Attendance	10

Course prerequisites:	To	study	this	course,	a	student	must	have	had	passed	theory	papers	of	VII
semester.														

0 4 1	• •	1 1 10	
Suggested	eanina	ent anline	CUIILCUC.
Buzztsitu	cuuivai	CIII OIIIIIC	courses.

Further	Suggestions:	

Semester-VIII

Bachelor of Chemistry with Honours

DISCIPLINE SPECIFIC ELECTIVE (DSE 8C) Chemistry of Biological Systems

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Cred	it distribution	of the Course	Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course
						(if any
DSE 8C:	4	3	-	1	Chemistry in	-
Chemistry of					Bachelor of	
Biological					Science	
Systems						

Programme: Bachelor of Chemistry with Honours	Year: IV	Semester: VIII
		Paper: DSE 8C

BACHELOR OF CHEMISTRY WITH HONOURS

Course: DSE 8 C Course Title: Chemistry of Biological systems

Course Outcomes:

Upon successful completion of this course, the students will be able to:

- Detailed knowledge of bioinorganic, bioorganic and biophysical chemistry.
- Get information about the synthesis, classification, extraction, purification, uses of enzymes and coenzymes, essential and trace metals and role of metal ions in biological processes.
- Understand the forces and mechanisms which are essential to sustain all the life on earth.

Credits: 4		Discipline Specific Elective DSI	E 8C
Max. Mai	rks: As per University rules	Min. Passing Marks: As per Ur	niversity rules
Unit	Торіс		No. of Hours
Unit I	Bioinorganic Chemistry: Essential and elements (Al, Hg, Cd, Pb). Role of metal in Na ⁺ , Ca ²⁺ , Mg ²⁺ , Mn ²⁺ , Fe ³⁺ , Co ²⁺ , Ni ²⁺ , Co cell membrane: active transport (ionophore transport (ion pumps: Na ⁺ /K ⁺ pump). Nitrogenase, fact Metal complexes in transmission of energy light dependent reaction, Haeme proteins: haeme groups, structure and biological for peroxidase, catalase, myoglobin, haemed Metalloproteins: function of metalloproteins rubredoxin, plastocynin), light harvesting (condismutase, carbonic anhydrase), oxygen storestored	ons in biological processes: K ⁺ , cu^{2+} , Zn^{2+} . Ion transport through is and ion channels) and passive ogen fixation: definition, types, ors affecting nitrogen fixation. It is chlorophyll a, chlorophyll b, definition, porphin, porphyrin, functions of cytochrome P450, oglobin, and oxygen uptake. It is, electron transfer (cytochrome, hlorophyll), catalyst (superoxide)	12
Unit II	Bioorganic Chemistry I: Introduction, Nextraction, purification and uses of enzynclinical therapy. Chemical and biological called enzymes like catalytic power, specificity a and molecular adaption. Enzyme kin Lineweaver-Burk plots, reversible and irrestate theory, Fisher's lock and key and Koloncept and identification of active site by significant concepts.	nes in food drink industry and stalysis, remarkable properties of and regulation. Proximity effects etics, Michaelis-Mentien and reversible inhibition. Transition shland's induced fit hypothesis,	12
Unit III	Bioorganic Chemistry II: Acid-base cataly distortion. Example of some typical enzymeribonuclease, lysozyme, carboxypeptidase vitamins, coenzymes, prosthetic groups biological functions of coenzymes A, the NADP ⁺ , and vitamin B ₁₂ .	e mechanisms for chymotrypsin, A. Cofactors as derived from , apoenzymes. Structure and niamine pyrophosphate, NAD ⁺ ,	12
Unit IV	Biophysical Chemistry: Forces involved in	biopolymer interactions.	

	31
Electrostatic charge and molecular expansion, hydrophobic forces, osmotic	9
pressure, membrane equilibrium. Bioenergetics: Standard free energy change	
in biological reactions. Hydrolysis of ATP, synthesis of ATP from ADP	
Coupling of ATP cleavage to endergonic processes Size, shape and	1
molecular mass of biopolymer.	
Unit V PROBLEM REALTED TO ABOVE UNITS	15

Recommended Readings:

- P.S. Kalsi, Bioorganic, Bioinorganic and Supramolecular Chemistry, New Age International.
- L. Stryer, Biochemistry 4th Ed., W. H. Freeman & Co.
- S. Zubay, Biochemistry Addison-Wesley.
- S. J. Lippard and J. M. Berg, Principles of Bioorganic Chemistry, University Science Books.
- Berteni, H.B. Gray, S.J. Lippard and J.S. Valentine, FBioinorganic Chemistry, , University Science Books.
- Hermann Dugs and C. Penny, Bioorganic Chemistry: A Chemical Approach to Enzyme Action, Springer-Verlag.
- Trevor Palmer, Understanding Enzymes, Prentice Hall.
- Collins J Sucking, Enzyme Chemistry: Impact and Application, Ed. Chapman and Hall.
- M.I. page and A. Williams, Enzyme Mechanisms Ed., Royal Society of Chemistry.
- N.C. Price and L. Stevens, Fundamental of Enzymology, Oxford University Press.
- Michael D. Trevan, Immobilized Enzymes: An Introduction and Application in Biotechnology, John Wiley.
- Alan Fersht. Enzyme Reaction and Mechanism, W H Freeman & Co (Sd).
- A.L. Lehninger, Principles of Biochemistry, Worth Publishers.
- J. M. Berg, J. L. Tymoczko and L. Stryer, Biochemistry, W.H. Freeman.
- Donald *Voet*, Charlotte W. Pratt, Judith G. *Voet*, Biochemistry, John Wiley.
- E.E. Conn and P.K. Stumpf, Outlines of Biochemistry, John Wiley.
- L. S. W. H. Freeman, Macromolecules: Structure and Function, Prenctice Hall.
- Pramod Pandey, Organic Chemistry, John Wiley

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online content:

https://drive.google.com/drive/folders/1FVY2nWBmNohhazw338xUgtEyQVRd1gUJ

https://onlinecourses.nptel.ac.in/noc22 cy06/preview

https://onlinecourses.nptel.ac.in/noc22 cy12/preview

https://nptel.ac.in/content/storage2/courses/104103018/pdf/mod1.pdf

Semester-VIII Bachelor of Chemistry with Honours

GENERAL ELECTIVE (GE 8A) Solid State Chemistry and Supramolecular Chemistry

No. of Hours- 60

Pre-requisite

Eligibility

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Credit distribution of the Course

		Lecture	Tutorial	Practi	cal/Practice	criteria	of the course (if any)
DSE: Solids State Chemistry and supramolecular	4	4	-		-	Chemis try in Bachelor of Science	-
Chemistry							
	BACE	IELOR O	F CHEMIS	STRY W	TTH HONOU	RS	
Programme: Bachelon	r of Chem	istry with	Honours		Year: IV		Semester: VIII
3		v					Paper: GE 8A
Subject: Chemistry							
Course: GE 8A Course Title: Solid State Chemistry and Supramolecular Chemistry							
Course Outcomes					•		-

Course Outcomes:

Course Title

Upon successful completion of this course, the students will be able to:

- Understand basics of solid-state reaction, crystal defects, and their effects on properties of materials.
- Learn the synthesis, preparations and applications of organic solids, fullerenes and molecular devices.
- Understanding the role of supramolecules in catalysis.

Credit

• Supramolecular chemistry will help them in understanding the role of supramolecules in catalysis. It will assist them to get a suitable job in the relevant industrial and scientific field.

Credits:4		Discipline Specific Elective					
Max. Ma	rks: As per University rules	Min. Passing Marks: As per University					
	rules						
Unit	Topic		No. of Hours				
Unit I	Solid State Reactions, Crystal Defects and Non principles, experimental procedures, co-precipitatio state reactions, kinetics of solid-state reactions, crystals, intrinsic and extrinsic defects- point defect vacancies- Schottky defects and Frenket defects	15					
Unit II	Electronic Properties and Band Theory: semiconductors, electronic structure of solids-band metals, insulators and semiconductors. In semiconductors, doping semiconductors, p-n junctio	theory. Band structure of trinsic and extrinsic	15				

		33
Unit III	Organic Solids, Fullerenes, Molecular Devices: Electrically conducting solids, organic charge transfer complexes, organic metals, new super conductors, magnetism in organic materials, fullerenes-doped, fullerenes as superconductors. Molecular rectifiers and transistors, artificial photosynthetic devices.	15
Unit IV	Supramolecular Chemistry I: Molecular recognition: molecular receptors for different types of molecules including arisonic substrates, design and synthesis of co-receptor molecules and multiple recognition. Strong, weak and very weak H-bonds, utilization of H-bonds to create supramolecular structures. Chelate and macrocyclic effects. Cation binding hosts, binding of anions, binding of neutral molecules, binding of organic molecules. Supramolecular reactivity and catalysis. Supramolecular devices, supramolecular photochemistry, supramolecular switching devices. Some examples of self-assembly in supramolecular chemistry.	15

Recommended Readings:

- G.W. Castellan, Physical Chemistry, 4 th Ed. Narosa.
- R.G. Mortimer, Physical Chemistry, 3 rd Ed. Elsevier: NOIDA, UP.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, includes or on-line tests, home assignments, group discussions or oral presentations.

Suggested equivalent online courses:

https://www.ias.ac.in/article/fulltext/reso/023/03/0277-0290

Semester-VIII

Bachelor of Chemistry with Honours

GENERIC ELECTIVES (GE 8 B) Analytical and Separation Techniques

No. of Hours- 60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite of
		Lecture	Tutorial	Practical/Practice	criteria	the course (if
						any)
GE: Analytical	4	4	-	-	Chemistry	-
and Separation					in Bachelor	
Techniques					of Science	

BACHELOR OF CHEMISTRY WITH HONOURS			
Programme: Bachelor of Chemistry with Honours		Year: IV	Semester: VIII Paper: GE 8B
Subject: Chemistry			
Course: GE 8B	Course Title: An	alytical and Separation	on Techniques

Course outcomes:

- This paper provides detailed knowledge of X-ray diffraction and electron diffraction techniques as well as students will learn chromatographic methods, radio analytical methods and extraction methods used in analysis of compounds.
- On completion of this course students will have detailed knowledge on TLC, HPLC, GLC, GSC, Ion exchange and gas chromatography.

Unit	Content	No. of Hours
Unit I	 X-ray Diffraction Methods: (I) Bragg condition, Miller indices, Laue's method, Bragg's method, Debye-Scherrer method of Xray structural analysis of crystals. Description of the procedure for an X-ray structure analysis, absolute configuration of molecules. Ramchandran diagram. (II) General Introduction of Electron Diffraction: Scattering intensity vs scattering angle, Wierl equation. 	15
Unit II	Chromatographic methods:	
	 I. An Introduction to Chromatography, Principle, instrumentation and Applications of gas and liquid chromatography, Partition Chromatography, Adsorption Chromatography II. Principle and application of TLC, paper, column and HPLC, Migration Rates of Solutes, and Broadening and Column Efficiency. 	
	III. Principles of GLC, Instruments for GLC, Gas Chromatographic Columns and Stationary Phases, Applications of GC and advances in GC, Column Efficiency in LC, Van-Demeter equation (no derivation), concept about HETP- Applications.	20
	IV. Gas-Solid Chromatography	
	V. Ion Exchange chromatography: Cationic, anionic exchangers and their applications.	
	VI. Gas Chromatography: Theory of gas chromatography, parts of gas chromatography, Detectors (TCD, FID, ECD).	
Unit III	Radio Analytical Methods: Basic principles and types of measuring instrument,	15
	isotope dilution techniques- principle ofoperations and uses. Applications.	15
	Neutron Activation Methods, Isotope Dilution Methods	

		35
Unit IV	Types of Extraction: Introduction, principle, techniques, factors affecting	10
	solvent extraction	

Books Recommended

- Skoog et al principles of Instrumental Analysis 2017 Brooks/ Cole Publisher
- Vogels Analytical Chemistry. Sultan Chand & Sons publishers 2005.
- B.K. Sharma, Instrumental methods of chemical analysis; Krishna Prakashan India 1972
- R. Puri, L. R. Sharma and M. S. Pathnia, Advanced Physical Chemistry, Milestone Publisher & Distributors, New Delhi

Suggestive digital platforms web links

https://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000944... https://egyankosh.ac.in/handle/123456789/43341